skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yoshikawa, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Substorms are known to induce global magnetosphere‐ionosphere coupling. However, the specific response of the dayside ionospheric electric field and its influence on the equatorial electrojet (EEJ) remain controversial. This study investigates the electromagnetic field response in the dayside equatorial region during isolated substorms using ground magnetic field data. Statistical analysis revealed that the H component decreased at equatorial and low‐latitude stations during isolated substorms. These decreases were of similar magnitude on average, indicating that significant changes in the EEJ caused by penetrating electric fields were not observed. However, individual events showed slight positive and negative variations. These results suggest that substorm‐associated electric fields can reach equatorial regions, but additional conditions determine the positive and negative variations. This finding provides new insights into the spatial extent of substorm‐induced electric fields. 
    more » « less
    Free, publicly-accessible full text available May 28, 2026